
Threat Modeling at Scale

SecAppDev 2017

Copyright © 2015, Cigital and/or its affiliates. All rights reserved. | Cigital Confidential Restricted

Jim DelGrosso

• Run Cigital's Architecture Analysis

practice

• 30+ years in software development in

many different domains

• 15+ years focusing on software security

• Executive Director of IEEE Computer

Society CSD initiative

@jimdelgrosso

http://cybersecurity.ieee.org/center-for-secure-design/

About Me

• Andrew Lee-Thorp

• alee-thorp@cigital.com

• @Cigital - Threat modelling, Android tool development,

assessments, still code, source code reviews

• > 10 years cutting code

• Occasional speaker

What Is Threat Modelling?

• Software design analysis capable of finding flaws

• A defect discovery technique that is part of your SSI

• You do have an SSI, right?

The Defect Universe – Bugs and Flaws

(Implementation) BUGS (Design) FLAWS

Cross Site Scripting

Buffer Overflow

Weak/Missing/Wrong
Security Control

Threat Modeling

Code Review

Penetration Testing

The Need For Threat Modelling

• When done early in the SDLC, it can avoid a lot of pain

later in the SDLC

• It complements the other (19) capabilities of your SSI

• Although it can find defects other SSI capabilities find…

• It’s the ONLY way to find certain defects

Some Threat Modelling Options

• Microsoft Threat Modelling

• “Software-centric approach”

• DFDs and STRIDE

• Attack trees

• Cigital Threat Modelling

• Assets, Threat Agents, Controls modelled directly

• Component Diagram

• Others

• PASTA

• Trike

• ...

Attack Trees

Threat Model Example

Characteristics of the System Threat Model include:

• Holistic view of application’s security posture

• Considers both application and infrastructure

• Builds roadmap for additional security activities

Steps For Threat Modeling

• Define scope and depth of analysis

• Gain understanding of what is being
threat modeled

• Model the system

• Model the attack possibilities

• Interpret the threat model

• Keep track of your analysis

Interviews

Build software model

Assets, Controls, Threat Agents

Trust Zones

Analysis

Traceability Matrix

Review Existing Models

HOW CAN THIS SCALE?

12

Scaling In Theory

1. Horizontal scaling (or scale-out)

• Increase the number of units doing the work

• Since we’re talking threat modelling … more threat modellers

2. Vertical Scaling (or scale-up)

• Increase the capacity of whoever is doing the work

• Since we’re talking threat modelling … smarter people, process

improvements

3. Parallelize

Scaling In Theory

4. Divide and conquer

• Solve more tractable sub-problems (distributed)

• Re-assemble results

• Repeat

5. Automate

• Identify repetitive parts of the process

• Automate, automate, automate

• Integrate the automation stream into the manual stream

• Tooling

The challenge

• https://www.bsimm.com/about/faq/

• … the software security group (SSG) median size is 5
people (smallest 1, largest 130, average 11.7)

https://www.bsimm.com/about/faq/

Scaling In Practice

“Increase the number of units doing the work”

• Hire more security people
• Maybe, but might not be cost effective

• Remember SSG is only ~2% of the size dev organisation

• Have more people “do” threat modeling

“Increase the capacity of whatever is doing the work”

• Work longer hours
• No thank you

• Increase brain function and do things faster, remember
more, be more creative
• Probably not

Scaling In Practice

“Increase the number of units doing the work”

• Move workload out of software security team

• Use development org to help build the threat model

Or

• Use development org to help build the threat system

model

Scaling In Practice

“Increase the capacity of whoever is doing the work”

• By doing less (off-loading work to dev org) … the

software security team does more (analysis) tied to

software security

“Divide and conquer”

• Analyse design patterns or archetypes (later)

“Automate”

• Analysis of the low-hanging fruit … once again the
software security team does more (analysis) tied to the
hard software security problems

Back to Our Sample Threat Model

• The modelling end goal is something like the diagram

below

• How can we get there efficiently?

Who Knows About Components and Connections?

Who Knows About Assets?

Who Knows About Controls?

Who Knows How Threat Agents Attack System?

PAIN POINTS

26

There will be pain points … these need to be unblocked

Pain Points

• Developer: “my system is a framework … I can’t model a

framework”

• “My control is distributed, I don’t know where to put it”

• Developer: “I don’t know how my system is deployed”

• Developer: “What’s in it for me?”

• Terminology confusion

Asset
Control

Threat Agent (Attacker)

Likelihood

Impact

Risk

Mitigation

Attack

Attack Surface
Threat Model

Attack Vector

Exploit

Attack Pattern

Terminology

Terminology Confusion

• OWASP:

Authorization — is mediating access to resources …

Access control and Authorization mean the same thing

• ISO/IEC 10181-3:

Authorization is the a-priori provisioning of entitlements

Access control check is the access decision function …

• Signed data versus MAC-ed data

ARCHETYPES

34

Reusing design patterns

• Humans think in terms of patterns!

• Threat modeling experts use pattern based

approach (implicitly)

• When patterns are implicitly understood

• Patterns are not comprehensible

• Approach is not scalable

• Patterns need to be explicitly understood

• Explicit patterns are comprehensible

• Consistent

• Efficient/Scalable

Patterns raise the abstraction level

Archetypes Everywhere

P1

P3

P4

P5

P2

Build a Library of Threat Models

Using Archetypes

Enterprise Application

SiteMinder
(AuthN)

Subsystem
Pattern

Queuing
Subsystem

Pattern

Workflow
Subsystem

Pattern

Content
Mgmt.

Subsystem
Pattern

.......

Threat
modeling
Template

Threat
modeling
Template

Threat
modeling
Template

Threat
modeling
Template

Consuming the template

Consuming the template

• Checklist for Message Queue pattern

• AV01: Read, modify, tamper messages in transit

• Description: A man-in-the-middle attacker can read, modify …

messages in transit

• Expected control: An authenticated, confidential channel

• When to apply: (1) Attacker has access to the message queue,

(2) No channel protection applied, (3) …

• AV02: Read messages from store persistence

• AV03: Unauthorised users publish messages

• Assets

Archetypes: advantages

• Each pattern is well understood from a security

viewpoint

• Catalogue of patterns is accumulated over time

• Archetypes jump-start the analysis

• Common assets, controls, threat agents, expected

trust boundaries

• Covers the low-hanging fruit

• Using archetypes does not require high-level

software security expertise

Archetypes disadvantages

• “Cross-pattern” interactions, can’t consider in

isolation, can’t offload deeper analysis and

second attacks.

• Tempting to force a pattern to fit your system

WORKSHOPS

48

Multi-disciplinary brainstorming

What is a workshop?

• Threat identification exercise facilitated by a

security expert – can be the satellite

• Development, architects, deployment, QA, product

management, support/ops, all in one place

Why run a workshop?

• Having a single analyst can be false economy, e.g.

multiple question-answer round trips

• New threats and perspectives on an application when

everyone contributes with their view and knowledge

CONCLUSION

Major Benefits of Threat Modeling at Scale

You’re threat modeling more applications!!

• Finding defects that cannot be found any other way

• Avoiding headaches later in the SDLC process

• Raising awareness

• Gaining insight about YOUR frequent design flaws

Reduce defect density

• Guidance

• Training

• Design patterns and/or checklists

• Libraries

• Etc.

Thank You

Copyright © 2015, Cigital and/or its affiliates. All rights reserved. | Cigital Confidential Restricted

